Indian Statistical Institute Final Examination 2013-2014 M.Math First Year

Linear Algebra

Time: 3 Hours Date: 06.11.2013 Maximum Marks: 100 Instructor: Jaydeb Sarkar

- (i) Answer all questions. (ii) All vector spaces are finite dimensional.
- Q1. (10 marks) Let V be a vector space over \mathbb{Q} . Let dimV=3 and $T\in\mathcal{L}(V)$. Show that $T^8 = I_V$ if and only if $T^4 = I_V$.
- Q2. (10 marks) Let V be an inner product space and $T \in \mathcal{L}(V)$. Prove that T is an isometry if and only if |T| is an isometry.
- Q3. (15 marks) State and prove the polar decomposition theorem.
- Q4. (10 marks) Let V be an inner product space. Let $T \in \mathcal{L}(V)$ and c > 0. Prove that $cI_V + T^*T$ is invertible.
- Q5. (10 marks) Let V be a vector and S be a subspace of V and dimV=5 and dimS=3. Let $P_S \in \mathcal{L}(V)$ be the orthogonal projection of V onto S. Compute the characteristic polynomial and the minimal polynomial of P_S .
- Q6. (10 + 5 marks) Let V be an inner product space and $T \in \mathcal{L}(V)$.
 - (i) Prove that $\dim[\ker T] = \dim[\ker T^*]$.
 - (ii) True or false (justify your answer): $\overline{\sigma(T)} = \sigma(T^*)$.
- Q7. (10 marks) Let $A \in M_5(\mathbb{C})$ with characteristic polynomial $d_A(z) = (z-2)^3(z+7)^2$ and minimal polynomial $m_A(z) = (z-2)^2(z+7)$. Find the Jordan canonical form for A.
- Q8. (15 marks) Let $T \in \mathcal{L}(V)$ and m be an integer with $1 \leq m < \dim V$. Suppose that $T(W) \subseteq W$ for all subspaces $W \subseteq V$ with $\dim W = m$. Prove that $T = cI_V$ for some scalar c.
- Q9. (5+10 marks) Let V be a vector space and $\{P_i\}_{i=1}^k \subseteq \mathcal{L}(V)$ such that $\sum_{i=1}^k P_i = I_V$ and $P_i P_j = 0$ for all $i \neq j$. Prove that
 - (i) P_i is a projection, $1 \le i \le k$.
- (ii) Let c_1, \ldots, c_k be distinct scalars and $T = \sum_{i=1}^k c_i P_i$. Prove that P_i commutes with Tand $P_i = p_i(T)$ for some $p_i \in F[x], 1 \le i \le k$.